Building around existing tunnels Seminar

Modelling considerations for the impact of loading on brittle brick lined oviforms

Arun Sarathchandran – Senior Engineer, AECOM Peter Waddell – Technical Director, AECOM

Sydney, 27 April 2023

Disclaimer: The speakers are presenting their own personal views and are not expressing the view of ATS or AGS.

Overview

- Introduction
- Literature Review
- Modelling Methodology
- Load Scenarios
- Results
- Conclusions

Introduction

- Urban construction works can potentially impact buried utilities
- Modelling of sensitive and brittle structures such as brick Oviforms (anisotropic, heterogeneous) are challenging.
- Modelling considerations, ability to withstand loads & behaviour at lower serviceability strains.
- A simplified approach to analysis with stiffness calibrated against discontinuum models.

(Source: Powerhouse museum)

Literature review

- Masonry structures are sensitive to tensile strains that can cause cracking.
- There are numerous publications on critical threshold strains on masonry building but are very limited for buried masonry structures
- Strains below 500µε and crack widths less than 0.1 mm are considered insignificant (for masonry buildings)
- Should be used with caution for masonry sewers/drains (New 2017) as it may exceed serviceability limits.

Literature review

- Thames Water
 - Tensile strain 500µɛ
 - Compression 25% of the allowable stress
- Sydney Water
 - Tensile strain 250με
 - Maximum crack width 0.2mm
 - Maximum depth of crack 1/5 of section thickness

Modelling strategies

- Detailed micro-modelling
- Simplified micro-modelling
- Macro modelling

Simplified micro-modelling of masonry structures (Idris et al 2009, Lourenco 1996, Al-Heib 2012)

Oviform geometry

• Brick units allowed to translate, rotate or fail along the interface.

Transverse Load scenarios

Masonry Properties

Parameter	Symbol	Unit	Mortar	Brick
Young's modulus	E'	MPa	-	10,000
Cohesion	J _{coh} / c' _{ref}	kPa	10-100 [50]	1000
Friction	J_{fric}	0	25-35 [30]	-
angle				
Joint tensile	J_{ten}	kPa	0	-
Strength				
Joint normal	K _N	GPa/m	1-50 [20]	-
stiffness				
Joint shear	K _s	GPa/m	1-20 [8.3]	-
501111255				

Transverse Modelling Results

- Ultimate and serviceability performance
- Failure of structure without confinement
- Structure is stable only when confined

Transverse Modelling Results

- Despite having no tensile capacity, Oviform can withstand substantial loads.
- Geometry of Oviform allows it to remain in a state of compression
- Surrounding soil fails, before the failure of oviform

Transverse Modelling Results

Continuum modelling with Equivalent stiffness

- Estimation of an equivalent liner elastic stiffness from discontinuum modelling
- Estimated elastic equivalent stiffness is close to the stiffness of mortar.

Macro modelling with Equivalent stiffness

 Maximum predicted tensile strains coincide with maximum crack opening location

Comparison of tensile crack location of discrete model with tensile strains location of continuum model

Crack opening near oviform crown

- Cracking of mortar joints leads to increased permeability
- Figure shows the comparison of cracks widths to tensile strains.
- This can be used to make a prediction about crack widths without performing a discontinuum model calculation.

AECOM

Comparison of crack widths to equivalent tensile strains

Longitudinal modelling

- Estimation of curvature
- Estimation of flexural strains (depth of neutral axis is assumed at extrados of structure)
- Estimation of axial tensile strains from horizontal ground strains
- Calculate total longitudinal strains by adding the above.

Conclusions

- Under confinement Oviform can withstand substantial loads without collapse
- Localised cracking is expected at small deformations, however, Oviform geometry allows it to remain in a state of compression
- Mortared joint brick Oviform can be modelled with linear elastic stiffness comparable to that of mortar.
- Results show maximum predicted tensile strains coincide with maximum crack opening location
- Maximum crack width can be estimated based on tensile strains on equivalent continuum model.

Thank You!

Questions

18